Weak Bases

A weak base is a compound that reacts incompletely with water to form an equilibrium that includes OH^- ions according to the following general equation.

$$B(aq) + H_2O(l) \Leftrightarrow OH^-(aq) + HB^+(aq)$$

For example, ammonia is a weak base.

$$NH_3(aq) + H_2O(l) \Leftrightarrow OH^-(aq) + NH_4^+(aq)$$

Ionization Constants for Weak Bases

Weak bases like ammonia (NH_3) and hydrazine (N_2H_4) form dynamic equilibria in aqueous solutions. As such, the reaction of a weak base with water results in an equilibrium law expression and an equilibrium constant.

The equilibrium constant for a weak base is known as the **base ionization constant** (K_b) . Consider the equilibrium reaction of ammonia with water.

$$NH_3(aq) + H_2O(l) \Leftrightarrow OH^-(aq) + NH_4^+(aq)$$

The equilibrium law expression for this reaction is written as,

$$K_{b} = \frac{\left[OH^{-}\right]\left[NH_{4}^{+}\right]}{\left[NH_{3}\right]}$$

The Relationship Between K_a and K_b

It can be shown that, for acids and bases whose chemical formulas differ only by a hydrogen (i.e. conjugate acid-base pairs),

$$K_a \times K_b = K_W$$

where $K_W = 1.0 \times 10^{-14}$ at $25^{\circ}C$.

This relationship allows us to convert the K_a values of acids into the K_b values of their conjugate bases (and vice versa). Standard acid-base tables typically list only the K_a of the acids. If you need to know the K_b of a base, first look up the K_a of its conjugate acid, then use the above equation to convert it.

Example 1

What is the value of the base ionization constant for the acetate ion (CH_3COO^-) at 25°C?

The pH of Weak Base Solutions

Just as we used the acid ionization constant to convert between pH and $[H^+]$, we can use the base ionization constant to determine the pH, pOH, $[H^+]$, and $[OH^-]$ of solutions of weak bases.

Example 2

Calculate the pH of a 0.10 *mol*/*L* aqueous solution of hydrazine (N_2H_4), a weak base. The K_b for hydrazine is 1.7×10^{-6} .

Worksheet

- 1. The K_b for hydrazine (N_2H_4) , a rocket fuel, is 1.7×10^{-6} . What is the K_a of its conjugate acid $(N_2H_5^+)$?
- 2. Use information from the Relative Strengths of Brønsted-Lowry Acids and Bases table and K_w to calculate the base ionization constant of the following bases.
 - a) iodate ion (IO_3^-) .
 - b) nitrite ion (NO_2^-) .
 - c) benzanoate ion $(C_6H_5COO^-)$.
- 3. Morphine $(C_{17}H_{19}NO_3)$ is a weak base and a powerful painkiller. A solution of morphine has a concentration of 0.01 mol/L. Determine the pH of this solution. The K_b for morphine is 7.5×10^{-7} .
- 4. Calculate the pH and $[H^+]$ of a 0.30 *mol*/*L* solution of butanoic acid $(HC_4H_7O_2)$. The K_a of butanoic acid is 1.52×10^{-5} .
- 5. Strychnine $(C_{21}H_{22}N_2O_2)$ is a weak base but a powerful poison. Calculate the pH of a 0.001 *mol*/L solution of strychnine. The K_b of strychnine is 1.0×10^{-6} .

Answers

- 1. 5.9×10^{-9}
- 2. (a) 5.9×10^{-14} (b) 2.2×10^{-11} (c) 1.5×10^{-10}
- 3. 9.94
- 4. $[H^+] = 2.1 \times 10^{-3} mol/L$, pH = 2.67
- 5. 9.5